Climate Change: Moving with a Flood

Weather occurrences such as extreme rainstorms, hurricanes, and tsunamis are viewed as destructive forces which is true given how land, and infrastructure are used. Whether it is the skyscrapers in cities, neighborhoods in suburbs, or farmland in rural areas, none are capable of adapting in the middle of an extreme flood or storm. However, these various elements of society have to be preserved. Various defenses such as storm water drains, and bulwarks have been used to protect these areas, but these methods often fail. The issue is not that these areas are not properly protected, but the structures in these areas need a lot of protection to not be destroyed. The structures we build are rigid, and are not designed to adapted to drastic changed. In short, as a result of how land is used, and structures are built, society must fight against rising sea level. While sea level rising is currently a destructive force to current society, rising of sea level has the potential to be a tool for society.

Instead of creating defenses against flooding another solution is to control the water. A basic solution to controlling flooding is to utilize permeable pavement. Permeable pavement allows water to pass through it into the ground. In addition to helping water return to the water cycle, the pavement would lessen the chance of overflowing storm water systems and; therefore, cut down on flooding. This pavement has the potential to lessen the amount of rainfall going into sewage systems by 80%. A limitation of this technology is it may not be able to pass water into the ground quickly during anything like a hurricane. With this said, infrastructure like eco-boulevards could compensate for the limitations of permeable pavement by controlling flooding. Eco-boulevards work to control where floods take place within a city. Yangming Archipelago designed a city within the larger city of Changde, China so that floodwater would fall into the middle of the city. As a result, the eco-boulevards creates a temporary lake within a city and turns parts of a city into mini islands. Floods do not have to be seen as an invading body, but something that is part of society.

Some places simply cannot be flooded, and therefore would benefit from the technology used in POP-UP, a parking garage, designed by THIRD NATURE, that “floats” on water. The POP-UP garage moves up and down depending on the amount of overflow from sewers in the water reservoir underneath the garage. As the reservoir fills and releases water, the garage moves up and down accordingly. This technology works well in urban environments because it combines a parking garage with a water reservoir, thus creating more free space for other purposes. However, this technology is not limited to making floating parking garage, but could be applied to any architecture that follows the Archimedes Principle. For example, vertical farms could use this as additional safety. A vertical farm takes the mold of an expensive farm and makes it into a tower. At different levels of this tower, different foods and fish can be raised year round. A vertical farm would help protect farms from flooding, but the technology used in POP-UP would make the farm flexible to move with water, thus preserving the structure. The rise of sea level would not be as devastating if infrastructure did not resist various degrees of change.

The following is an image of how POP-UP works:

If flooding is going to be treated as a useful force then it has to be treated as a tool, not something to get rid of as soon as possible. For example, flooding has the potential to be real-estate, rather than a threat that destroys real-estate with the use of floating infrastructure. Floating infrastructure is not limited by issues such as space or continuing sea level rising, and thus works on a spectrum of facilities. For example, Floating City App has created a solar powered floating school by giving shipping containers an extreme make over. These floating schools come with a classroom, kitchen, bathroom, and solar powered battery pack. Given the compact nature of these schools that are easy to put into use. On the opposite end of the spectrum of floating infrastructure are plans like floating airports. In 2000, Mega Float created a floating airport in Tokyo Bay, Japan that measured 1000 meters long. The airport was so long that it rode multiple wave cycles at once that canceled each other out, and allowed the airport to remain stable. Since the airport was not viewed as necessary, it was dismantled in 2003. However, in the UK there have been proposals of creating a floating airport due to the growing population. Between population growth, the scarcity of real-estate, and rise of sea level, floating airports may become a reality again. With this said, there is not a reason to stop at airports as the extent of floating infrastructure, whole floating cities could be built. Floating cities change the issue of losing to rising sea leveling to a need to construct more space.

The following video discusses the future of floating airports:

The rise of sea level of force of flooding does not have to be a destructive force, but a force that requires change. Rising sea level is a current issue, and will persist for thousands of years. Fighting against rising sea level may only slow down the process, while making use of the floods and open water offer a more sustaining solution.

, ,

No comments yet.

Leave a Reply